Files
nvidia-cuda/src/01-init-kernel-solution.cu
Guilherme Werner 5165824ea5 Section 3
2023-11-03 17:52:39 -03:00

91 lines
2.1 KiB
Plaintext

#include <stdio.h>
__global__ void initWith(float num, float *a, int N)
{
int index = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < N; i += stride)
{
a[i] = num;
}
}
__global__ void addVectorsInto(float *result, float *a, float *b, int N)
{
int index = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < N; i += stride)
{
result[i] = a[i] + b[i];
}
}
void checkElementsAre(float target, float *vector, int N)
{
for (int i = 0; i < N; i++)
{
if (vector[i] != target)
{
printf("FAIL: vector[%d] - %0.0f does not equal %0.0f\n", i, vector[i], target);
exit(1);
}
}
printf("Success! All values calculated correctly.\n");
}
int main()
{
int deviceId;
int numberOfSMs;
cudaGetDevice(&deviceId);
cudaDeviceGetAttribute(&numberOfSMs, cudaDevAttrMultiProcessorCount, deviceId);
const int N = 2 << 24;
size_t size = N * sizeof(float);
float *a;
float *b;
float *c;
cudaMallocManaged(&a, size);
cudaMallocManaged(&b, size);
cudaMallocManaged(&c, size);
cudaMemPrefetchAsync(a, size, deviceId);
cudaMemPrefetchAsync(b, size, deviceId);
cudaMemPrefetchAsync(c, size, deviceId);
size_t threadsPerBlock;
size_t numberOfBlocks;
threadsPerBlock = 256;
numberOfBlocks = 32 * numberOfSMs;
cudaError_t addVectorsErr;
cudaError_t asyncErr;
initWith<<<numberOfBlocks, threadsPerBlock>>>(3, a, N);
initWith<<<numberOfBlocks, threadsPerBlock>>>(4, b, N);
initWith<<<numberOfBlocks, threadsPerBlock>>>(0, c, N);
addVectorsInto<<<numberOfBlocks, threadsPerBlock>>>(c, a, b, N);
addVectorsErr = cudaGetLastError();
if (addVectorsErr != cudaSuccess)
printf("Error: %s\n", cudaGetErrorString(addVectorsErr));
asyncErr = cudaDeviceSynchronize();
if (asyncErr != cudaSuccess)
printf("Error: %s\n", cudaGetErrorString(asyncErr));
checkElementsAre(7, c, N);
cudaFree(a);
cudaFree(b);
cudaFree(c);
}